Anda belum login :: 24 Nov 2024 03:54 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
TPDA2 Algorithm for Learning BN Structure From Missing Value and Outliers in Data Mining
Oleh:
Sitohang, Benhard
;
Saptawati, G. A. Putri
Jenis:
Article from Journal - ilmiah nasional - tidak terakreditasi DIKTI
Dalam koleksi:
Jurnal Informatika vol. 7 no. 2 (Nov. 2006)
,
page 108-113.
Topik:
data mining
;
missing value
;
noisy data
;
BN structure
;
TPDA
Fulltext:
benhard sitohang.pdf
(250.79KB)
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
JJ103.2
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Three - Phase Dependency Analysis (TPDA) algorithm was proved as most efficient algorithm (which requires at most O(N4) Conditional Independence (CI) tests). By integrating TPDA with ?node topological sort algorithm ?, it can be used to learn Bayesian Network (BN) structure from missing value (named as TPDA1 algorithm). And then, outlier can be reduced by applying an ? outlier detection & removal algorithm ? as pre - processing for TPDA1. TPDA2 algorithm proposed consists of those ideas, outlier detection & removal, TPDA, and node topological sort node.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)