Anda belum login :: 24 Nov 2024 03:54 WIB
Detail
ArtikelTPDA2 Algorithm for Learning BN Structure From Missing Value and Outliers in Data Mining  
Oleh: Sitohang, Benhard ; Saptawati, G. A. Putri
Jenis: Article from Journal - ilmiah nasional - tidak terakreditasi DIKTI
Dalam koleksi: Jurnal Informatika vol. 7 no. 2 (Nov. 2006), page 108-113.
Topik: data mining; missing value; noisy data; BN structure; TPDA
Fulltext: benhard sitohang.pdf (250.79KB)
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: JJ103.2
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelThree - Phase Dependency Analysis (TPDA) algorithm was proved as most efficient algorithm (which requires at most O(N4) Conditional Independence (CI) tests). By integrating TPDA with ?node topological sort algorithm ?, it can be used to learn Bayesian Network (BN) structure from missing value (named as TPDA1 algorithm). And then, outlier can be reduced by applying an ? outlier detection & removal algorithm ? as pre - processing for TPDA1. TPDA2 algorithm proposed consists of those ideas, outlier detection & removal, TPDA, and node topological sort node.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)