Anda belum login :: 27 Nov 2024 06:20 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Multiple Imputation for Missing Data : Making The Most of What You Know
Oleh:
Cummings, Jonathan M.
;
Fichman, Mark
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
Organizational Research Methods vol. 6 no. 3 (2003)
,
page 282-308.
Topik:
Data
;
missing data
;
multivariate analsis
;
multiple imputation
;
statistical estimation
;
internet use
Fulltext:
282.pdf
(181.79KB)
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
OO3.4
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Missing data are a common problem in organizatinal research. Missing data can occur due to attrition in a longitudinal study or non response to questionnaire items in a laboratory or field setting. Improper treatments of missing data (e. g. listwise deletion, mean imputation) can lead to biased statistical inference using complete case analysisi stratistical techniques. This article presents a simulation and data analysis case study using a method for dealing with missing data, multiple imputation, that allows for valid statistical inference with complete case statistical analysis. Software for implementing multiple imputaiton under a multivariate normal model is freely and widely available (e. g. NORM, SAS, SOLAS). It should be routinely considered for imputing missing data. The authors illustrate the application of this technique using data from the home net project.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)