Anda belum login :: 23 Nov 2024 07:55 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
A Parameter Optimization Method for Radial Basis Function Type Models
Oleh:
Ozaki, T.
;
Toyoda, Y.
;
Peng, Hu
;
Haggan-Ozaki, V.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 14 no. 2 (2003)
,
page 432-438.
Topik:
radial basis function network
;
parameter
;
optimization method
;
radial basis function
;
type models
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.7
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
This paper considers the non linear systems modeling problem for control. A structured non linear parameter optimization method (SNPOM) adapted to radial basis function (RBF) networks and an RBF network - style coefficients autoregressive model with exogenous variable model parameter estimation is presented. This is an off - line nonlinear model parameter optimization method, depending partly on the Levenberg - Marquardt method for nonlinear parameter optimization and partly on the least - squares method using singular value decomposition for linear parameter estimation. When compared with some other algorithms, the SNPOM accelerates the computational convergence of the parameter optimization search process of RBF - type models. The usefulness of this approach is illustrated by means of several examples.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)