Anda belum login :: 23 Nov 2024 17:39 WIB
Detail
ArtikelSoft Nearest Prototype Classification  
Oleh: Obermayer, K. ; Seo, S. ; Bode, M.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 14 no. 2 (2003), page 390-398.
Topik: prototype; soft nearest; prototype; classification
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.7
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelWe propose a new method for the construction of nearest prototype classifiers which is based on a Gaussian mixture ansatz and which can be interpreted as an annealed version of learning vector quantization (LVQ). The algorithm performs a gradient descent on a cost - function minimizing the classification error on the training set. We investigate the properties of the algorithm and assess its performance for several toy data sets and for an optical letter classification task. Results show : 1) that annealing in the dispersion parameter of the Gaussian kernels improves classification accuracy ; 2) that classification results are better than those obtained with standard learning vector quantization (LVQ 2.1, LVQ 3) for equal numbers of prototypes ; and 4) that annealing of the width parameter improved the classification capability. Additionally, the principled approach provides an explanation of a number of features of the (heuristic) LVQ methods.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.03125 second(s)