Anda belum login :: 27 Nov 2024 06:59 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
A New Class of Quasi-Newtonian Methods for Optimal Learning in MLP-Networks
Oleh:
Fanelli, S.
;
Bortoletti, A.
;
Zellini, P.
;
Fiore, C. Di
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 14 no. 2 (2003)
,
page 263-273.
Topik:
networks
;
quasi experimentation
;
quasi - newtonian methods
;
optimal learning
;
MLP - networks
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.7
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
In this paper, we present a new class of quasi - Newton methods for an effective learning in large multilayer perceptron (MLP) - networks. The algorithms introduced in this work, named LQN, utilize an iterative scheme of a generalized BFGS - type method, involving a suitable family of matrix algebras L. The main advantages of these innovative methods are based upon the fact that they have an O(nlogn) complexity per step and that they require O(n) memory allocations. Numerical experiences, performed on a set of standard benchmarks of MLP - networks, show the competitivity of the LQN methods, especially for large values of n.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.046875 second(s)