Anda belum login :: 23 Nov 2024 12:08 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Backpropagation of Pseudoerrors : Neural Networks That Are Adaptive to Heterogeneous Noise
Oleh:
Ding, A. A.
;
He, Xiali
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 14 no. 2 (2003)
,
page 253-262.
Topik:
BACKPROPAGATION
;
backpropagation
;
pseudoerrors
;
neural networks
;
heterogeneous noise
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.7
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Neural networks are used for prediction model in many applications. The backpropagation algorithm used in most cases corresponds to a statistical nonlinear regression model assuming the constant noise level. Many proposed prediction intervals in the literature so far also assume the constant noise level. There are no prediction intervals in the literature that are accurate under varying noise level and skewed noises. We propose prediction intervals that can automatically adjust to varying noise levels by applying the regression transformation model of Carroll and Rupert (1988). The parameter estimation under the transformation model with power transformations is shown to be equivalent to the backpropagation of pseudo - errors. This new backpropagation algorithm preserves the ability of online training for neural networks.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)