Anda belum login :: 23 Nov 2024 23:25 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Recursive Least-Squares Backpropagation Algorithm for Stop-and-Go Decision-Directed Blind Equalization
Oleh:
Zerguine, A.
;
Bettayeb, M.
;
Abrar, S.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 13 no. 6 (2002)
,
page 1472-1481.
Topik:
BACKPROPAGATION
;
recursive
;
backpropagation
;
algorithms
;
decision
;
equalization
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.7A
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Stop - and - go decision - directed (S & G - DD) equalization is the most primitive blind equalization (BE) method for the cancelling of intersymbol - interference in data communication systems. Recently, this scheme has been applied to complex-valued multilayer feedforward neural network, giving robust results with a lower mean - square error at the expense of slow convergence. To overcome this problem, in this work, a fast converging recursive least squares (RLS) - based complex - valued backpropagation learning algorithm is derived for S & G - DD blind equalization. Simulation results show the effectiveness of the proposed algorithm in terms of initial convergence.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.03125 second(s)