Anda belum login :: 23 Nov 2024 23:25 WIB
Detail
ArtikelRecursive Least-Squares Backpropagation Algorithm for Stop-and-Go Decision-Directed Blind Equalization  
Oleh: Zerguine, A. ; Bettayeb, M. ; Abrar, S.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 13 no. 6 (2002), page 1472-1481.
Topik: BACKPROPAGATION; recursive; backpropagation; algorithms; decision; equalization
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.7A
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelStop - and - go decision - directed (S & G - DD) equalization is the most primitive blind equalization (BE) method for the cancelling of intersymbol - interference in data communication systems. Recently, this scheme has been applied to complex-valued multilayer feedforward neural network, giving robust results with a lower mean - square error at the expense of slow convergence. To overcome this problem, in this work, a fast converging recursive least squares (RLS) - based complex - valued backpropagation learning algorithm is derived for S & G - DD blind equalization. Simulation results show the effectiveness of the proposed algorithm in terms of initial convergence.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.03125 second(s)