Anda belum login :: 23 Nov 2024 11:55 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Robust Adaptive Neural Control for A Class of Perturbed Strict Feedback Nonlinear Systems
Oleh:
Ge, S. S.
;
Wang, Jin
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 13 no. 6 (2002)
,
page 1409-1419.
Topik:
robust
;
robust
;
adaptive
;
neural control
;
non linear systems
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.7A
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
This paper presents a robust adaptive neural control design for a class of perturbed strict feedback non linear system with both completely unknown virtual control coefficients and unknown nonlinearities. The unknown nonlinearities comprise two types of nonlinear functions : one naturally satisfies the "triangularity condition" and can be approximated by linearly parameterized neural networks, while the other is assumed to be partially known and consists of parametric uncertainties and known "bounding functions." With the utilization of iterative Lyapunov design and neural networks, the proposed design procedure expands the class of nonlinear systems for which robust adaptive control approaches have been studied. The design method does not require a priori knowledge of the signs of the unknown virtual control coefficients. Leakage terms are incorporated into the adaptive laws to prevent parameter drifts due to the inherent neural - network approximation errors. It is proved that the proposed robust adaptive scheme can guarantee the uniform ultimate boundedness of the closed - loop system signals.. The control performance can be guaranteed by an appropriate choice of the design parameters. Simulation studies are included to illustrate the effectiveness of the proposed approach.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)