Anda belum login :: 23 Nov 2024 10:59 WIB
Detail
ArtikelRBF Neural Network Center Selection Based on Fisher Ration Class Separability Measure  
Oleh: Mao, K. Z.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 13 no. 5 (2002), page 1211-1217.
Topik: fisheries; RBF; neural network; fisher ration
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.7A
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelFor classification applications, the role of hidden layer neurons of a radial basis function (RBF) neural network can be interpreted as a function which maps input patterns from a nonlinear separable space to a linear separable space. In the new space, the responses of the hidden layer neurons form new feature vectors. The discriminative power is then determined by RBF centers. In the present study, we propose to choose RBF centers based on Fisher ratio class separability measure with the objective of achieving maximum discriminative power. We implement this idea using a multistep procedure that combines Fisher ratio, an orthogonal transform, and a forward selection search method. Our motivation of employing the orthogonal transform is to decouple the correlations among the responses of the hidden layer neurons so that the class separability provided by individual RBF neurons can be evaluated independently. The strengths of our method are double fold. First, our method selects a parsimonious network architecture. Second, this method selects centers that provide large class separation.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)