Anda belum login :: 27 Nov 2024 01:53 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Generalized Information Potential Criterion for Adaptive System Training
Oleh:
Erdogmus, D.
;
Principe, J. C.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 13 no. 5 (2002)
,
page 1035-1044.
Topik:
criterion
;
potential criterion
;
system training
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.7A
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
We have previously proposed the quadratic Renyi's error entropy as an alternative cost function for supervised adaptive system training. An entropy criterion instructs the minimization of the average information content of the error signal rather than merely trying to minimize its energy. In this paper, we propose a generalization of the error entropy criterion that enables the use of any order of Renyi's entropy and any suitable kernel function in density estimation. It is shown that the proposed entropy estimator preserves the global minimum of actual entropy. The equivalence between global optimization by convolution smoothing and the convolution by the kernel in Parzen windowing is also discussed. Simulation results are presented for time - series prediction and classification where experimental demonstration of all the theoretical concepts is presented.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)