Anda belum login :: 24 Nov 2024 07:41 WIB
Detail
ArtikelUnsupervised Speaker Recognition Based on Competition Between Self-Organizing Maps  
Oleh: Cohen, A. ; Guterman, H. ; Lapidot, I.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 13 no. 4 (2002), page 877-887.
Topik: SPEAKERS; speaker recognition; competition; self - organizing maps
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.7A
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelWe present a method for clustering the speakers from unlabeled and unsegmented conversation (with known number of speakers), when no a priori knowledge about the identity of the participants is given. Each speaker was modeled by a self - organizing map (SOM). The SOM s were randomly initiated. An iterative algorithm allows the data move from one model to another and adjust the SOM s. The restriction that the data can move only in small groups but not by moving each and every feature vector separately force the SOM s to adjust to speakers (instead of phonemes or other vocal events). This method was applied to high - quality conversations with two to five participants and to two - speaker telephone - quality conversations. The results for two (both high - and telephone - quality) and three speakers were over 80 % correct segmentation. The problem becomes even harder when the number of participants is also unknown. Based on the iterative clustering algorithm a validity criterion was also developed to estimate the number of speakers. In 16 out of 17 conversations of high - quality conversations between two and three participants, the estimation of the number of the participants was correct. In telephone - quality the results were poorer.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)