Anda belum login :: 24 Nov 2024 00:35 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Competitive Learning With Floating-Gate Circuits
Oleh:
Diorio, C.
;
Figueroa, M.
;
Hsu, D.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 13 no. 3 (2002)
,
page 732-744.
Topik:
circuits
;
competitive learning
;
floating - gate
;
circuits
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.6
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Competitive learning is a general technique for training clustering and classification networks. We have developed an 11 - transistor silicon circuit, that we term an automaximizing bump circuit, that uses silicon physics to naturally implement a similarity computation, local adaptation, simultaneous adaptation and computation and nonvolatile storage. This circuit is an ideal building block for constructing competitive - learning networks. We illustrate the adaptive nature of the automaximizing bump in two ways. First, we demonstrate a silicon competitive - learning circuit that clusters one - dimensional (1 - D) data. We then illustrate a general architecture based on the automaximizing bump circuit ; we show the effectiveness of this architecture, via software simulation, on a general clustering task. We corroborate our analysis with experimental data from circuits fabricated in a 0.35 - µm CMOS process.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)