Anda belum login :: 24 Nov 2024 00:35 WIB
Detail
ArtikelCompetitive Learning With Floating-Gate Circuits  
Oleh: Diorio, C. ; Figueroa, M. ; Hsu, D.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 13 no. 3 (2002), page 732-744.
Topik: circuits; competitive learning; floating - gate; circuits
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.6
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelCompetitive learning is a general technique for training clustering and classification networks. We have developed an 11 - transistor silicon circuit, that we term an automaximizing bump circuit, that uses silicon physics to naturally implement a similarity computation, local adaptation, simultaneous adaptation and computation and nonvolatile storage. This circuit is an ideal building block for constructing competitive - learning networks. We illustrate the adaptive nature of the automaximizing bump in two ways. First, we demonstrate a silicon competitive - learning circuit that clusters one - dimensional (1 - D) data. We then illustrate a general architecture based on the automaximizing bump circuit ; we show the effectiveness of this architecture, via software simulation, on a general clustering task. We corroborate our analysis with experimental data from circuits fabricated in a 0.35 - µm CMOS process.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)