Anda belum login :: 17 Feb 2025 08:38 WIB
Detail
ArtikelGlobal Exponential Stability of Recurrent Neural Networks for Synthesizing Linear Feedback Control Systems Via Pole Assignment  
Oleh: Zhang, Yunong ; Jun, Wang
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 13 no. 3 (2002), page 633-644.
Topik: assignments; global exponential; stability; neural networks; synthesizing; linear feedback; control systems; assignment
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.6
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelGlobal exponential stability is the most desirable stability property of recurrent neural networks. The paper presents new results for recurrent neural networks applied to online computation of feedback gains of linear time - invariant multivariable systems via pole assignment. The theoretical analysis focuses on the global exponential stability, convergence rates, and selection of design parameters. The theoretical results are further substantiated by simulation results conducted for synthesizing linear feedback control systems with different specifications and design requirements.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.03125 second(s)