Anda belum login :: 23 Nov 2024 07:54 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Hough Transform Network : Learning Conoidal Structures in A Connectionist Framework
Oleh:
Basak, J.
;
Das, A.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 13 no. 2 (2002)
,
page 381-392.
Topik:
FRAMEWORK
;
transform network
;
learning conoidal
;
connectionist
;
framework
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.6
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
A two - layer neural - network model is designed which accepts image coordinates as the input and learns the parametric form of conoidal shapes (lines / circles / ellipses) adaptively. It provides an efficient representation of visual information embedded in the connection weights and the parameters of the processing elements. It not only reduces the large space requirements of the classical Hough transform (HT), but also represents parameters with a higher precision. The performance of the methodology is compared with other existing algorithms and has been found to excel over those algorithms in many cases.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)