Anda belum login :: 24 Nov 2024 03:25 WIB
Detail
ArtikeluARTMAP : Use of Mutual Information for Category Reduction in Fuzzy ARTMAP  
Oleh: Gomez-Sanchez, E. ; Dimitriadis, Y. A. ; Cano-Izquierdo, J. M. ; Lopez-Coronado, J.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 13 no. 1 (2002), page 58-69.
Topik: reduction; uARTMAP; mutual information; category reduction; fuzzy ARTMAP
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.6
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelA new architecture called µARTMAP is proposed to impact a category proliferation problem present in Fuzzy ARTMAP. Under a probabilistic setting, it seeks a partition of the input space that optimizes the mutual information with the output space, but allowing some training error, thus avoiding overfitting. It implements an inter - ART reset mechanism that permits handling exceptions correctly, thus using few categories, especially in high dimensionality problems. It compares favorably to Fuzzy ARTMAP and Boosted ARTMAP in several synthetic benchmarks, being more robust to noise than Fuzzy ARTMAP and degrading less as dimensionality increases. Evaluated on a real - world task, the recognition of handwritten characters, it performs comparably to Fuzzy ARTMAP, while generating a much more compact rule set.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.03125 second(s)