Anda belum login :: 23 Nov 2024 11:08 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
An Input-Output Based Robust Stabilization Criterion for Neural-Network Control of Nonlinear Systems
Oleh:
Caflete, J. Fernandez de
;
Barreiro, A.
;
Garcia-Cerezo, A.
;
Garcia-Moral, I.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 12 no. 6 (2001)
,
page 1491-1497.
Topik:
non linear
;
input - output
;
robust stabilization
;
neural - network control
;
non linear systems
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.6
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
A stabilization method based on the input - output conicity criterion is presented. Conventional learning algorithms are applied to adjust the controller dynamics, and robust stability of the closed - loop system is guaranteed by modifying the training patterns which yield unstable behaviour. The methodology developed expands the class of nonlinear systems to be controlled using neural control schemes, so that the stabilization of a broad class of neural - network - based control systems, even with unknown dynamics, is assured. Straightforwardness in the application of this method is evident in contrast to the Lyapunov function approach.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.0625 second(s)