Anda belum login :: 13 Mar 2025 09:45 WIB
Detail
ArtikelA New Pruning Heuristic Based on Variance Analysis of Sensitivity Information  
Oleh: Engelbrecht, A. P.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 12 no. 6 (2001), page 1386-1399.
Topik: heuristics; pruning heuristic; variance; sensitivity information
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.6
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelArchitecture selection is a very important aspect in the design of neural networks (NN s) to optimally tune performance and computational complexity. Sensitivity analysis has been used successfully to prune irrelevant parameters from feedforward NN s. This paper presents a new pruning algorithm that uses the sensitivity analysis to quantify the relevance of input and hidden units. A new statistical pruning heuristic is proposed, based on the variance analysis, to decide which units to prune. The basic idea is that a parameter with a variance in sensitivity not significantly different from zero, is irrelevant and can be removed. Experimental results show that the new pruning algorithm correctly prunes irrelevant input and hidden units. The new pruning algorithm is also compared with standard pruning algorithms.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)