Anda belum login :: 24 Nov 2024 10:13 WIB
Detail
ArtikelLSTM Recurrent Networks Learn Simple Context-Free and Context-Sensitive Languages  
Oleh: Gers, F. A. ; Schmidhuber, E.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 12 no. 6 (2001), page 1333-1340.
Topik: networks; LSTM; networks; simple context - free; context - sensitive languages
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.6
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelPrevious work on learning regular languages from exemplary training sequences showed that long short-term memory (LSTM) outperforms traditional recurrent neural networks (RNN s). We demonstrate LSTMs superior performance on context - free language benchmarks for RNN s, and show that it works even better than previous hardwired or highly specialized architectures. To the best of our knowledge, LSTM variants are also the first RNN s to learn a simple context - sensitive language, namely a(n)b(n)c(n).
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)