Anda belum login :: 27 Nov 2024 03:47 WIB
Detail
ArtikelSelf-Organizing Maps, Vector Quantization, and Mixture Modeling  
Oleh: Heskes, T.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 12 no. 6 (2001), page 1299-1305.
Topik: Finite mixture models; self - organizing maps; vector quantization; mixture modeling
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.6
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelSelf - organizing maps are popular algorithms for unsupervised learning and data visualization. Exploiting the link between vector quantization and mixture modeling, we derive expectation - maximization (EM) algorithms for self - organizing maps with and without missing values. We compare self - organizing maps with the elastic - net approach and explain why the former is better suited for the visualization of high - dimensional data. Several extensions and improvements are discussed. As an illustration we apply a self - organizing map based on a multinomial distribution to market basket analysis.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)