Anda belum login :: 27 Nov 2024 03:47 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Self-Organizing Maps, Vector Quantization, and Mixture Modeling
Oleh:
Heskes, T.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 12 no. 6 (2001)
,
page 1299-1305.
Topik:
Finite mixture models
;
self - organizing maps
;
vector quantization
;
mixture modeling
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.6
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Self - organizing maps are popular algorithms for unsupervised learning and data visualization. Exploiting the link between vector quantization and mixture modeling, we derive expectation - maximization (EM) algorithms for self - organizing maps with and without missing values. We compare self - organizing maps with the elastic - net approach and explain why the former is better suited for the visualization of high - dimensional data. Several extensions and improvements are discussed. As an illustration we apply a self - organizing map based on a multinomial distribution to market basket analysis.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)