Anda belum login :: 23 Nov 2024 07:05 WIB
Detail
ArtikelOn The Electric Potentials Inside A Charged Soft Hydrated Biological Tissue : Streaming Potential Versus Diffusion Potential  
Oleh: Ateshian, Gerard A. ; Sun, Daniel D. ; Lai, W. Michael ; Mow, Van C.
Jenis: Article from Bulletin/Magazine
Dalam koleksi: Journal of Biomechanical Engineering vol. 122 no. 4 (2000), page 336-346.
Topik: diffusion; electric potential; biological tissue; streaming; diffusion
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: JJ52.2
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelThe main objective of this study is to determine the nature of electric fields inside articular cartilage while accounting for the effects of both streaming potential and diffusion potential. Specifically, we solve two tissue mechano -electrochemical problems using the triphasic theories developed by Lai et al. (1991, ASME J. Biomech Eng., 113, pp. 245 - 258) and Gu et al. (1998, ASME J. Biomech. Eng., 120, pp. 169 – 180) : (1) the steady one - dimensional permeation problem ; and (2) the transient one - dimensional ramped - displacement, confined - compression, stress - relaxation problem (both in an open circuit condition) so as to be able to calculate the compressive strain, the electric potential, and the fixed charged density (FCD) inside cartilage. Our calculations show that in these two technically important problems, the diffusion potential effects compete against the flow - induced kinetic effects (streaming potential) for dominance of the electric potential inside the tissue. For softer tissues of similar FCD (i. e., lower aggregate modulus), the diffusion potential effects are enhanced when the tissue is being compressed (i. e., increasing its FCD in a non uniform manner) either by direct compression or by drag - induced compaction ; indeed, the diffusion potential effect may dominate over the streaming potential effect. The polarity of the electric potential field is in the same direction of interstitial fluid flow when streaming potential dominates, and in the opposite direction of fluid flow when diffusion potential dominates. For physiologically realistic articular cartilage material parameters, the polarity of electric potential across the tissue on the outside (surface to surface) may be opposite to the polarity across the tissue on the inside (surface to surface). Since the electromechanical signals that chodrocytes perceive in situ are the stresses, strains, pressures and the electric field generated inside the extracellular matrix when the tissue is deformed, the results from this study offer new challenges for the understanding of possible mechanisms that control chondrocyte biosyntheses.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.03125 second(s)