Anda belum login :: 23 Nov 2024 11:58 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
A Training Rule Which Guarantees Finite-Region Stability for A Class of Closed-Loop Neural-Network Control Systems
Oleh:
Kuntanapreeda, S.
;
Fullmer, R. R.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 7 no. 3 (1996)
,
page 745-751.
Topik:
neural network
;
training rule
;
guarantees
;
finite - region
;
stability
;
closed - loop
;
neural network
;
control systems
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.1
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
A training method for a class of neural network controllers is presented which guarantees closed - loop system stability. The controllers are assumed to be nonlinear, feedforward, sampled - data, full - state regulators implemented as single hidden - layer neural networks. The controlled systems must be locally hermitian and observable. Stability of the closed - loop system is demonstrated by determining a Lyapunov function, which can be used to identify a finite stability region about the regulator point.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)