Anda belum login :: 23 Nov 2024 20:39 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Self-Stabilized Gradient Algorithm for Blind Source Separation with Orthogonality Constraints
Oleh:
Douglas, S. C.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 11 no. 6 (2000)
,
page 1490-1497.
Topik:
Temperature Gradient
;
self - stabilized
;
gradient algorithm
;
blind source
;
separation
;
orthogonality constraints
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.4
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Developments in self - stabilized algorithms for gradient adaptation of orthonormal matrices have resulted in simple but powerful principal and minor subspace analysis methods. We extend these ideas to develop algorithms for instantaneous prewhitened blind separation of homogeneous signal mixtures. Our algorithms are proven to be self - stabilizing to the Stiefel manifold of orthonormal matrices, such that the rows of the adaptive demixing matrix do not need to be periodically reorthonormalized. Several algorithm forms are developed, including those that are equivariant with respect to the prewhitened mixing matrix. Simulations verify the excellent numerical properties of the proposed methods for the blind source separation task.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)