Anda belum login :: 17 Feb 2025 13:39 WIB
Detail
ArtikelImprovements to The SMO Algorithm for SVM Regression  
Oleh: Bhattacharyya, C. ; Murthy, K. R. K. ; Keerthi, S. S. ; Shevade, S. K.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 11 no. 5 (2000), page 1188-1193.
Topik: algorithms; SMO algortihm; SVM regression
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.4
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelThis paper points out an important source of inefficiency in Smola and Scholkopf's (1998) sequential minimal optimization (SMO) algorithm for support vector machine regression that is caused by the use of a single threshold value. Using clues from the Karush - Kuhn - Tucker conditions for the dual problem, two threshold parameters are employed to derive modifications of SMO for regression. These modified algorithms perform significantly faster than the original SMO on the datasets tried.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.03125 second(s)