Anda belum login :: 17 Feb 2025 13:39 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Improvements to The SMO Algorithm for SVM Regression
Oleh:
Bhattacharyya, C.
;
Murthy, K. R. K.
;
Keerthi, S. S.
;
Shevade, S. K.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 11 no. 5 (2000)
,
page 1188-1193.
Topik:
algorithms
;
SMO algortihm
;
SVM regression
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.4
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
This paper points out an important source of inefficiency in Smola and Scholkopf's (1998) sequential minimal optimization (SMO) algorithm for support vector machine regression that is caused by the use of a single threshold value. Using clues from the Karush - Kuhn - Tucker conditions for the dual problem, two threshold parameters are employed to derive modifications of SMO for regression. These modified algorithms perform significantly faster than the original SMO on the datasets tried.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.03125 second(s)