Anda belum login :: 23 Nov 2024 11:02 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Global Exponential Stability of Recurrent Neural Networks for Solving Optimization and Related Problems
Oleh:
Jun, Wang
;
Xia, Youshen
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 11 no. 4 (2000)
,
page 1017-1022.
Topik:
optimization
;
global
;
exponential stability
;
neural networks
;
optimization
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.4
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Global exponential stability is a desirable property for dynamic systems. The paper studies the global exponential stability of several existing recurrent neural networks for solving linear programming problems, convex programming problems with interval constraints, convex programming problems with nonlinear constraints, and monotone variational inequalities. In contrast to the existing results on global exponential stability, the present results do not require additional conditions on the weight matrices of recurrent neural networks and improve some existing conditions for global exponential stability. Therefore, the stability results in the paper further demonstrate the superior convergence properties of the existing neural networks for optimization.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.03125 second(s)