Anda belum login :: 23 Nov 2024 09:34 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Fuzzy Auto-Associative Neural Networks for Principal Component Extraction of Noisy Data
Oleh:
Yang, Tai-Ning
;
Wang, Sheng-De
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 11 no. 3 (2000)
,
page 808-810.
Topik:
networks
;
fuzzy
;
auto - associative
;
neural networks
;
principal component
;
extraction
;
noisy data
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.4
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
In this paper, we propose a fuzzy auto - associative neural network for principal component extraction. The objective function is based on reconstructing the inputs from the corresponding outputs of the auto - associative neural network. Unlike the traditional approaches, the proposed criterion is a fuzzy mean squared error. We prove that the proposed objective function is an appropriate fuzzy formulation of auto - associative neural network for principal component extraction. Simulations are given to show the performances of the proposed neural networks in comparison with the existing method.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)