Anda belum login :: 23 Nov 2024 17:52 WIB
Detail
ArtikelCross-Validation and Non-Parametric k Nearest-Neighbour Estimation  
Oleh: Qi, Li ; Dong, Li ; Desheng, Ouyang
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: The Econometrics Journal vol. 9 no. 3 (2006), page 448-471.
Topik: nonparametric; k nearest neighbour; non parametric smoothing; cross validation; asymptotic normality
Fulltext: 448.pdf (345.92KB)
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: EE39.2
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelIn this paper we consider the problem of estimating a non - parametric regression function using the k nearest - neighbour method. We provide asymptotic theories for the least - squares cross validation (CV) selected smoothing parameter k for both local constant and local linear estimation methods. We also establish the asymptotic normality results for the resulting non - parametric regression function estimators. Some limited Monte Carlo experiments show that the CV method performs well in finite sample applications.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)