Anda belum login :: 27 Nov 2024 17:03 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Neural Computation Approach for Developing A 3-D Shape Reconstruction Model
Oleh:
Cho, Siu-Yueng
;
Chow, T. W. S.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 12 no. 5 (2001)
,
page 1204-1214.
Topik:
3D
;
neural computation
;
developing
;
3 - D shape
;
reconstruction
;
model
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.5
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
The shape from shading problem refers to the well - known fact that most real images usually contain specular components and are affected by unknown reflectivity. In this paper, these limitations are addressed and a new neural - based 3D shape reconstruction model is proposed. The idea behind this approach is to optimize a proper reflectance model by learning the parameters of the proposed neural reflectance model. In order to do this, new neural - based reflectance models are presented. The feedforward neural network (FNN) model is able to generalize the diffuse term, while the RBF model is able to generalize the specular term. A hybrid structure of FNN -based and RBF - based models is also presented because most real surfaces are usually neither Lambertian models nor ideally specular models. Experimental results, including synthetic and real images, are presented to demonstrate the performance of our approach given different specular effects, unknown illuminate conditions, and different noise environments.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)