Anda belum login :: 27 Nov 2024 08:30 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Selecting Inputs for Modeling Using Normalized Higher Order Statistics and Independent Component Analysis
Oleh:
Back, A. D.
;
Trappenberg, T. P.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 12 no. 3 (2001)
,
page 612-617.
Topik:
independent study
;
inputs
;
normalized higher order
;
statistics
;
independent component analysis
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.5
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
The problem of input variable selection is well known in the task of modeling real - world data. In this paper, we propose a novel model - free algorithm for input variable selection using independent component analysis and higher order cross statistics. Experimental results are given which indicate that the method is capable of giving reliable performance and that it outperforms other approaches when the inputs are dependent.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)