Anda belum login :: 27 Nov 2024 08:30 WIB
Detail
ArtikelSelecting Inputs for Modeling Using Normalized Higher Order Statistics and Independent Component Analysis  
Oleh: Back, A. D. ; Trappenberg, T. P.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 12 no. 3 (2001), page 612-617.
Topik: independent study; inputs; normalized higher order; statistics; independent component analysis
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.5
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelThe problem of input variable selection is well known in the task of modeling real - world data. In this paper, we propose a novel model - free algorithm for input variable selection using independent component analysis and higher order cross statistics. Experimental results are given which indicate that the method is capable of giving reliable performance and that it outperforms other approaches when the inputs are dependent.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)