Anda belum login :: 27 Nov 2024 09:10 WIB
Detail
ArtikelVector Quantization of Images Using Modified Adaptive Resonance Algorithm for Hierarchical Clustering  
Oleh: Card, H. C. ; Vlajic, N.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 12 no. 5 (2001), page 1147-1162.
Topik: hierarchical linear modeling; vector quantization; images; adaptive resonance; algorithm; hierarchical clustering
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.5
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelA modified adaptive resonance theory (ART2) learning algorithm, which we employ in this paper, belongs to the family of NN algorithms whose main goal is the discovery of input data clusters, without considering their actual size. This feature makes the modified ART2 algorithm very convenient for image compression tasks, particularly when dealing with images with large background areas containing few details. Moreover, due to the ability to produce hierarchical quantization (clustering), the modified ART2 algorithm is proved to significantly reduce the computation time required for coding, and therefore enhance the overall compression process. Examples of the results obtained are presented, suggesting the benefits of using this algorithm for the purpose of VQ, i. e., image compression, over the other NN learning algorithms.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)