Anda belum login :: 19 Feb 2025 00:23 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Geometric Neural Computing
Oleh:
Bayro-Corrochano, E. J.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 12 no. 5 (2001)
,
page 968-986.
Topik:
geometric data
;
geometric
;
neural computing
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.5
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
This paper shows the analysis and design of feedforward neural networks using the coordinate - free system of Clifford or geometric algebra. It is shown that real-, complex -, and quaternion - valued neural networks are simply particular cases of the geometric algebra multidimensional neural networks and that some of them can also be generated using support multivector machines (SMVM s). Particularly, the generation of radial basis function for neurocomputing in geometric algebra is easier using the SMVM, which allows one to find automatically the optimal parameters. The use of support vector machines in the geometric algebra framework expands its sphere of applicability for multi dimensional learning. Interesting examples of non linear problems show the effect of the use of an adequate Clifford geometric algebra which alleviate the training of neural networks and that of SMVM s.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)