Anda belum login :: 23 Nov 2024 10:38 WIB
Detail
ArtikelCost Function and Model Combination for VaR-Based Asset Allocation Using Neural Networks  
Oleh: Chapados, N. ; Bengio, Y.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 12 no. 4 (2001), page 890-906.
Topik: asset allocation; cost function; model combination; VaR - based; asset allocation; neural networks
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.5
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelWe introduce an asset - allocation framework based on the active control of the value - at - risk of the portfolio. Within this framework, we compare two paradigms for making the allocation using neural networks. The first one uses the network to make a forecast of asset behaviour, in conjunction with a traditional mean - variance allocator for constructing the portfolio. The second paradigm uses the network to directly make the portfolio allocation decisions. We consider a method for performing soft input variable selection, and show its considerable utility. We use model combination (committee) methods to systematize the choice of hyperparameters during training. We show that committees using both paradigms are significantly outperforming the benchmark market performance.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)