Anda belum login :: 27 Nov 2024 03:08 WIB
Detail
ArtikelStatistical Inference, The Bootstrap, and Neural-Network Modeling With Application to Foreign Exchange Rates  
Oleh: White, H. ; Racine, J.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 12 no. 4 (2001), page 657-673.
Topik: FOREIGN EXCHANGE RATES; statistical; bootstrap; neural network; application; foreign exchange rates
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.5
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelWe propose tests for individual and joint irrelevance of network inputs. Such tests can be used to determine whether an input or group of inputs “belong” in a particular model, thus permitting valid statistical inference based on estimated feedforward neural - network models. The approaches employ well - known statistical resampling techniques. We conduct a small Monte Carlo experiment showing that our tests have reasonable level and power behavior, and we apply our methods to examine whether there are predictable regularities in foreign exchange rates. We find that exchange rates do appear to contain information that is exploitable for enhanced point prediction, but the nature of the predictive relations evolves through time.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)