Anda belum login :: 27 Nov 2024 03:08 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Statistical Inference, The Bootstrap, and Neural-Network Modeling With Application to Foreign Exchange Rates
Oleh:
White, H.
;
Racine, J.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 12 no. 4 (2001)
,
page 657-673.
Topik:
FOREIGN EXCHANGE RATES
;
statistical
;
bootstrap
;
neural network
;
application
;
foreign exchange rates
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.5
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
We propose tests for individual and joint irrelevance of network inputs. Such tests can be used to determine whether an input or group of inputs “belong” in a particular model, thus permitting valid statistical inference based on estimated feedforward neural - network models. The approaches employ well - known statistical resampling techniques. We conduct a small Monte Carlo experiment showing that our tests have reasonable level and power behavior, and we apply our methods to examine whether there are predictable regularities in foreign exchange rates. We find that exchange rates do appear to contain information that is exploitable for enhanced point prediction, but the nature of the predictive relations evolves through time.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)