Anda belum login :: 23 Nov 2024 22:20 WIB
Detail
ArtikelState-Based SHOSLIF for Indoor Visual Navigation  
Oleh: Weng, Juyang ; Chen, Shaoyun
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 11 no. 6 (2000), page 1300-1314.
Topik: navigation; SHOSLIF; indoor visual navigation
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.4
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelIn this paper, we investigate vision - based navigation using the self - organizing hierarchical optimal subspace learning and inference framework (SHOSLIF) that incorporates states and a visual attention mechanism. With states to keep the history information and regarding the incoming video input as an observation vector, the vision - based navigation is formulated as an observation - driven Markov model (ODMM). The ODMM can be realized through recursive partitioning regression. A stochastic recursive partition tree (SRPT), which maps a preprocessed current input raw image and the previous state into the current state and the next control signal, is used for efficient recursive partitioning regression. The SRPT learns incrementally : each learning sample is learned or rejected "on - the - fly." The proposed scheme has been successfully applied to indoor navigation.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)