Anda belum login :: 23 Nov 2024 22:20 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
State-Based SHOSLIF for Indoor Visual Navigation
Oleh:
Weng, Juyang
;
Chen, Shaoyun
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 11 no. 6 (2000)
,
page 1300-1314.
Topik:
navigation
;
SHOSLIF
;
indoor visual navigation
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.4
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
In this paper, we investigate vision - based navigation using the self - organizing hierarchical optimal subspace learning and inference framework (SHOSLIF) that incorporates states and a visual attention mechanism. With states to keep the history information and regarding the incoming video input as an observation vector, the vision - based navigation is formulated as an observation - driven Markov model (ODMM). The ODMM can be realized through recursive partitioning regression. A stochastic recursive partition tree (SRPT), which maps a preprocessed current input raw image and the previous state into the current state and the next control signal, is used for efficient recursive partitioning regression. The SRPT learns incrementally : each learning sample is learned or rejected "on - the - fly." The proposed scheme has been successfully applied to indoor navigation.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)