Anda belum login :: 23 Nov 2024 20:04 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Estimation of Elliptical Basis Function Parameters By The EM Algorithm With Application to Speaker Verification
Oleh:
Mak, Man-Wai
;
Kung, Sun-Yuan
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 11 no. 4 (2000)
,
page 961-969.
Topik:
ALGORITHM
;
estimation
;
elliptical basis
;
parameters
;
EM algorithm
;
speaker verification
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.4
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
This paper proposes to incorporate full covariance matrices into the radial basis function (RBF) networks and to use the expectation - maximization (EM) algorithm to estimate the basis function parameters. The resulting networks, referred to as elliptical basis function (EBF) networks, are evaluated through a series of text - independent speaker verification experiments involving 258 speakers from a phonetically balanced, continuous speech corpus (TIMIT). We propose a verification procedure using RBF and EBF networks as speaker models and show that the networks are readily applicable to verifying speakers using LP - derived cepstral coefficients as features. Experimental results show that small EBF networks with basis function parameters estimated by the EM algorithm outperform the large RBF networks trained in the conventional approach. The results also show that the equal error rate achieved by the EBF networks is about two - third of that achieved by the vector quantization-based speaker models.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)