Anda belum login :: 17 Feb 2025 11:16 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Mixture of Experts for Classification of Gender, Ethnic Origin, and Pose of Human Faces
Oleh:
Wechsler, H.
;
Gutta, S.
;
Huang, J. R. J.
;
Jonathon, P.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 11 no. 4 (2000)
,
page 948-960.
Topik:
GENDER
;
mixture
;
classification
;
gender
;
ethnic origin
;
pose of human faces
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.4
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
We describe the application of mixtures of experts on gender and ethnic classification of human faces, and pose classification, and show their feasibility on the FERET database of facial images. The mixture of experts is implemented using the “divide and conquer” modularity principle with respect to the granularity and / or the locality of information. The mixture of experts consists of ensembles of radial basis functions (RBF s). Inductive decision trees (DTs) and support vector machines (SVMs) implement the “gating network” components for deciding which of the experts should be used to determine the classification output and to restrict the support of the input space. Both the ensemble of RBF's (ERBF) and SVM use the RBF kernel (“expert”) for gating the inputs. Our experimental results yield an average accuracy rate of 96 % on gender classification and 92 % on ethnic classification using the ERBF / DT approach from frontal face images, while the SVM yield 100 % on pose classification.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.03125 second(s)