Anda belum login :: 27 Nov 2024 04:14 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Learning Neural Networks With Noisy Inputs Using The Errors-in-Variables Approach
Oleh:
Gorp, J. Van
;
Schoukens, J.
;
Pintelon, R.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 11 no. 2 (2000)
,
page 402-414.
Topik:
approach
;
learning
;
neural networks
;
noisy inputs
;
errors - in - variables
;
approach
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.4
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Currently, most learning algorithms for neural-network modeling are based on the output error approach, using a least squares cost function. This method provides good results when the network is trained with noisy output data and known inputs. Special care must be taken, however, when training the network with noisy input data, or when both inputs and outputs contain noise. This paper proposes a novel cost function for learning NN with noisy inputs, based on the errors - in - variables stochastic framework. A learning scheme is presented and examples are given demonstrating the improved performance in neural - network curve fitting, at the cost of increased computation time.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)