Anda belum login :: 17 Feb 2025 13:03 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Evaluation of Convolutional Neural Networks for Visual Recognition
Oleh:
Nebauer, C.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 9 no. 4 (1998)
,
page 685-696.
Topik:
visualization
;
evaluation
;
convolutional
;
neural networks
;
visual recognition
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.3
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Convolutional neural networks provide an efficient method to constrain the complexity of feedforward neural networks by weight sharing and restriction to local connections. This network topology has been applied in particular to image classification when sophisticated preprocessing is to be avoided and raw images are to be classified directly. In this paper two variations of convolutional networks-neocognitron and a modification of neocognitron-are compared with classifiers based on fully connected feedforward layers with respect to their visual recognition performance. For a quantitative experimental comparison with standard classifiers two very different recognition tasks have been - chosen : handwritten digit recognition and face recognition. In the first example, the generalization of convolutional networks is compared to fully connected networks ; in the second example human face recognition is investigated under constrained and variable conditions, and the limitations of convolutional networks are discussed.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.03125 second(s)