Anda belum login :: 17 Feb 2025 13:03 WIB
Detail
ArtikelEvaluation of Convolutional Neural Networks for Visual Recognition  
Oleh: Nebauer, C.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 9 no. 4 (1998), page 685-696.
Topik: visualization; evaluation; convolutional; neural networks; visual recognition
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.3
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelConvolutional neural networks provide an efficient method to constrain the complexity of feedforward neural networks by weight sharing and restriction to local connections. This network topology has been applied in particular to image classification when sophisticated preprocessing is to be avoided and raw images are to be classified directly. In this paper two variations of convolutional networks-neocognitron and a modification of neocognitron-are compared with classifiers based on fully connected feedforward layers with respect to their visual recognition performance. For a quantitative experimental comparison with standard classifiers two very different recognition tasks have been - chosen : handwritten digit recognition and face recognition. In the first example, the generalization of convolutional networks is compared to fully connected networks ; in the second example human face recognition is investigated under constrained and variable conditions, and the limitations of convolutional networks are discussed.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.03125 second(s)