Anda belum login :: 23 Nov 2024 10:47 WIB
Detail
ArtikelA Hybrid Linear / Nonlinear Training Algorithm for Feedforward Neural Networks  
Oleh: Lightbody, G. ; McLoone, S. ; Irwin, G. ; Brown, M. D.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 9 no. 4 (1998), page 669-684.
Topik: TRAINING; hybrid linear; training algorithm; neural networks
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.3
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelThis paper presents a new hybrid optimization strategy for training feedforward neural networks. The algorithm combines gradient-based optimization of nonlinear weights with singular value decomposition (SVD) computation of linear weights in one integrated routine. It is described for the multilayer perceptron (MLP) and radial basis function (RBF) networks and then extended to the local model network (LMN), a new feedforward structure in which a global nonlinear model is constructed from a set of locally valid submodels. Simulation results are presented demonstrating the superiority of the new hybrid training scheme compared to second - order gradient methods. It is particularly effective for the LMN architecture where the linear to non linear parameter ratio is large.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.03125 second(s)