Anda belum login :: 17 Feb 2025 13:02 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Simulated Annealing and Weight Decay in Adaptive Learning : The SARPROP Algorithm
Oleh:
Treadgold, N. K.
;
Gedeon, T. D.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 9 no. 4 (1998)
,
page 662-668.
Topik:
ALGORITHM
;
annealing
;
weight decay
;
adaptive learning
;
SARPROP algorithm
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.3
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
A problem with gradient descent algorithms is that they can converge to poorly performing local minima. Global optimization algorithms address this problem, but at the cost of greatly increased training times. This work examines combining gradient descent with the global optimization technique of simulated annealing (SA). Simulated annealing in the form of noise and weight decay is added to resiliant backpropagation (RPROP), a powerful gradient descent algorithm for training feedforward neural networks. The resulting algorithm, SARPROP, is shown through various simulations not only to be able to escape local minima, but is also able to maintain, and often improve the training times of the RPROP algorithm. In addition, SARPROP may be used with a restart training phase which allows a more thorough search of the error surface and provides an automatic annealing schedule.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)