Anda belum login :: 27 Nov 2024 08:01 WIB
Detail
ArtikelAnalog Neural Nonderivative Optimizers  
Oleh: Teixeira, M. C. M. ; Zak, S.H.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 9 no. 4 (1998), page 629-638.
Topik: analogy; analog neural; non derivative optimizers
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.3
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelContinuous-time neural networks for solving convex nonlinear unconstrained programming problems without using gradient information of the objective function are proposed and analyzed. Thus, the proposed networks are nonderivative optimizers. First, networks for optimizing objective functions of one variable are discussed. Then, an existing one-dimensional optimizer is analyzed, and a new line search optimizer is proposed. It is shown that the proposed optimizer network is robust in the sense that it has disturbance rejection property. The network can be implemented easily in hardware using standard circuit elements. The one - dimensional net is used as a building block in multidimensional networks for optimizing objective functions of several variables. The multidimensional nets implement a continuous version of the coordinate descent method.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.03125 second(s)