Anda belum login :: 23 Nov 2024 12:07 WIB
Detail
ArtikelRadial Basis Function Networks and Complexity Regularization in Function Learning  
Oleh: Krzyzak, A. ; Linder, T.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 9 no. 2 (1998), page 247-256.
Topik: LEARNING; radial basis; function networks; complexity regularization; functin learning
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.3
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelWe apply the method of complexity regularization to derive estimation bounds for nonlinear function estimation using a single hidden layer radial basis function network. Our approach differs from previous complexity regularization neural-network function learning schemes in that we operate with random covering numbers and l1 metric entropy, making it possible to consider much broader families of activation functions, namely functions of bounded variation. Some constraints previously imposed on the network parameters are also eliminated this way. The network is trained by means of complexity regularization involving empirical risk minimization. Bounds on the expected risk in terms of the sample size are obtained for a large class of loss functions. Rates of convergence to the optimal loss are also derived.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)