Anda belum login :: 27 Nov 2024 07:11 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Global Convergence of Oja's Subspace Algorithm for Principal Component Extraction
Oleh:
Chen, Tianping
;
Hua, Yingbo
;
Yan, Wei-Yong
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 9 no. 1 (1998)
,
page 58-67.
Topik:
extraction
;
global convergence
;
oja's subspace
;
algorithm
;
principal
;
ocmponent
;
extractin
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.3
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Oja's principal subspace algorithm is a well - known and powerful technique for learning and tracking principal information in time series. A thorough investigation of the convergence property of Oja's algorithm is undertaken in this paper. The asymptotic convergence rates of the algorithm is discovered. The dependence of the algorithm on its initial weight matrix and the singularity of the data covariance matrix is comprehensively addressed.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)