Anda belum login :: 23 Nov 2024 09:47 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Reliable Roll Force Prediction in Cold Mill Using Multiple Neural Networks
Oleh:
Cho, Sungzoon
;
Cho, Yongjung
;
Yoon, Sungchul
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 8 no. 4 (1997)
,
page 874-882.
Topik:
Prediction
;
roll force
;
prediction
;
cold mill
;
multiple
;
neural networks
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.2
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
The cold rolling mill process in steel works uses stands of rolls to flatten a strip to a desired thickness. The accurate prediction of roll force is essential for product quality. Currently, a suboptimal mathematical model is used. We trained two multilayer perceptrons, one to directly predict the roll force and the other to compute a corrective coefficient to be multiplied to the prediction made by the mathematical model. Both networks were shown to improve the accuracy by 30 - 50 %. Combining the two networks and the mathematical model results in systems with an improved reliability.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.03125 second(s)