Anda belum login :: 27 Nov 2024 04:19 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Curvilinear Component Analysis : A Self-Organizing Neural Network for Nonlinear Mapping of Data Sets
Oleh:
Herault, J.
;
Demartines, P.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 8 no. 1 (1997)
,
page 148-154.
Topik:
ANALYSIS
;
curvilinear
;
component analysis
;
self - organizing
;
neural network
;
non linear
;
mapping
;
data sets
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.2
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
We present a new strategy called “curvilinear component analysis” (CCA) for dimensionality reduction and representation of multidimensional data sets. The principle of CCA is a self - organized neural network performing two tasks : vector quantization (VQ) of the submanifold in the data set (input space); and non linear projection (P) of these quantizing vectors toward an output space, providing a revealing unfolding of the submanifold. After learning, the network has the ability to continuously map any new point from one space into another: forward mapping of new points in the input space, or backward mapping of an arbitrary position in the output space.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.03125 second(s)