Anda belum login :: 23 Nov 2024 12:30 WIB
Detail
ArtikelThree-Dimensional Object Representation and Invariant Recognition Using Continuous Distance Transform Neural Networks  
Oleh: Tseng, Yen-Hao ; Hwang, Jenq-Neng ; Sheehan, F. H.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 8 no. 1 (1997), page 141-147.
Topik: recognition; three - dimensional object representation; invariation recognition; continuous distance; transform; neural networks
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.2
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikel3D object recognition under partial object viewing is a difficult pattern recognition task. In this paper, we introduce a neural - network solution that is robust to partial viewing of objects and noise corruption. This method directly utilizes the acquired 3D data and requires no feature extraction. The object is first parametrically represented by a continuous distance transform neural network (CDTNN) trained by the surface points of the exemplar object. The CDTNN maps any 3D coordinate into a value that corresponds to the distance between the point and the nearest surface point of the object. Therefore, a mismatch between the exemplar object and an unknown object can be easily computed. When encountered with deformed objects, this mismatch information can be backpropagated through the CDTNN to iteratively determine the deformation in terms of affine transform. Application to 3D heart contour delineation and invariant recognition of 3D rigid - body objects is presented.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)