Anda belum login :: 23 Nov 2024 12:07 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Circular Backpropagation Networks for Classification
Oleh:
Rovetta, S.
;
Ridella, S.
;
Zunino, R.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 8 no. 1 (1997)
,
page 84-97.
Topik:
CLASSIFICATION
;
circular backpropagation
;
networks
;
classification
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.2
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
The class of mapping networks is a general family of tools to perform a wide variety of tasks. This paper presents a standardized, uniform representation for this class of networks, and introduces a simple modification of the multilayer perceptron with interesting practical properties, especially well suited to cope with pattern classification tasks. The proposed model unifies the two main representation paradigms found in the class of mapping networks for classification, namely, the surface - based and the prototype - based schemes, while retaining the advantage of being trainable by backpropagation. The enhancement in the representation properties and the generalization performance are assessed through results about the worst - case requirement in terms of hidden units and about the Vapnik - Chervonenkis dimension and cover capacity. The theoretical properties of the network also suggest that the proposed modification to the multilayer perceptron is in many senses optimal. A number of experimental verifications also confirm theoretical results about the model's increased performances, as compared with the multilayer perceptron and the Gaussian radial basis functions network.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.03125 second(s)