Anda belum login :: 23 Nov 2024 14:00 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Multiplication-Free Radial Basis Function Network
Oleh:
Kampl, S.
;
Heiss, M.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 7 no. 6 (1996)
,
page 1461-1464.
Topik:
radial basis function network
;
multiplication - free
;
radial basis
;
function network
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.1
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
For the purpose of adaptive function approximation, a new radial basis function network is proposed which is nonlinear in its parameters. The goal is to reduce significantly the computational effort for a serial processor, by avoiding multiplication in both the evaluation of the function model and the computation of the parameter adaptation. The approximation scheme makes use of a grid-based Gaussian basis function network. Due to the local support of digitally implemented Gaussian functions the function representation is parametric local and therefore well suited for an online implementation on a microcomputer. A gradient descent based non linear learning algorithm is presented and the convergence of the algorithm is proved.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.03125 second(s)