Anda belum login :: 27 Nov 2024 09:02 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Median Radial Basis Function Neural Network
Oleh:
Pitas, I.
;
Bors, A. G.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 7 no. 6 (1996)
,
page 1351-1364.
Topik:
radial basis function network
;
median
;
radial basis
;
function
;
neural network
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.1
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Radial basis functions (RBFs) consist of a two - layer neural network, where each hidden unit implements a kernel function. Each kernel is associated with an activation region from the input space and its output is fed to an output unit. In order to find the parameters of a neural network which embeds this structure we take into consideration two different statistical approaches. The first approach uses classical estimation in the learning stage and it is based on the learning vector quantization algorithm and its second - order statistics extension. After the presentation of this approach, we introduce the median radial basis function (MRBF) algorithm based on robust estimation of the hidden unit parameters. The proposed algorithm employs the marginal median for kernel location estimation and the median of the absolute deviations for the scale parameter estimation. A histogram - based fast implementation is provided for the MRBF algorithm. The theoretical performance of the two training algorithms is comparatively evaluated when estimating the network weights. The network is applied in pattern classification problems and in optical flow segmentation.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)