Anda belum login :: 17 Feb 2025 14:04 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Scale-Based Clustering Using The Radial Basis Function Network
Oleh:
Ghosh, J.
;
Chakravarthy, S. V.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 7 no. 5 (1996)
,
page 1250-1261.
Topik:
CLUSTERING
;
scale - based
;
clustering
;
radial basis
;
function network
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.1
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
This paper shows how scale - based clustering can be done using the radial basis function network (RBFN), with the RBF width as the scale parameter and a dummy target as the desired output. The technique suggests the “right” scale at which the given data set should be clustered, thereby providing a solution to the problem of determining the number of RBF units and the widths required to get a good network solution. The network compares favorably with other standard techniques on benchmark clustering examples. Properties that are required of non - Gaussian basis functions, if they are to serve in alternative clustering networks, are identified. This work, on the whole, points out an important role played by the width parameter in RBFN, when observed over several scales, and provides a fundamental link to the scale space theory developed in computational vision.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)