Anda belum login :: 27 Nov 2024 00:08 WIB
Detail
ArtikelAn Optimal Tracking Neuro-Controller for Nonlinear Dynamic Systems  
Oleh: Park, Young-Moon ; Choi, Myeon-Song ; Lee, K.Y.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 7 no. 5 (1996), page 1099-1110.
Topik: tracking systems; optimal tracking; neuro - controller; non linear dynamic systems
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.1
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelMultilayer neural networks are used to design an optimal tracking neuro - controller (OTNC) for discrete - time nonlinear dynamic systems with quadratic cost function. The OTNC is made of two controllers : feedforward neuro - controller (FFNC) and feedback neuro - controller (FBNC). The FFNC controls the steady - state output of the plant, while the FBNC controls the transient - state output of the plant. The FFNC is designed using a novel inverse mapping concept by using a neuro - identifier. A generalized backpropagation - through - time (GBTT) algorithm is developed to minimize the general quadratic cost function for the FBNC training. The proposed methodology is useful as an off - line control method where the plant is first identified and then a controller is designed for it. A case study for a typical plant with nonlinear dynamics shows good performance of the proposed OTNC.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.078125 second(s)