Anda belum login :: 27 Nov 2024 00:08 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
An Optimal Tracking Neuro-Controller for Nonlinear Dynamic Systems
Oleh:
Park, Young-Moon
;
Choi, Myeon-Song
;
Lee, K.Y.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 7 no. 5 (1996)
,
page 1099-1110.
Topik:
tracking systems
;
optimal tracking
;
neuro - controller
;
non linear dynamic systems
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.1
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Multilayer neural networks are used to design an optimal tracking neuro - controller (OTNC) for discrete - time nonlinear dynamic systems with quadratic cost function. The OTNC is made of two controllers : feedforward neuro - controller (FFNC) and feedback neuro - controller (FBNC). The FFNC controls the steady - state output of the plant, while the FBNC controls the transient - state output of the plant. The FFNC is designed using a novel inverse mapping concept by using a neuro - identifier. A generalized backpropagation - through - time (GBTT) algorithm is developed to minimize the general quadratic cost function for the FBNC training. The proposed methodology is useful as an off - line control method where the plant is first identified and then a controller is designed for it. A case study for a typical plant with nonlinear dynamics shows good performance of the proposed OTNC.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.078125 second(s)